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Electrical properties of 𝑚×𝑛 cylindrical network∗
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We consider the problem of electrical properties of an m×n cylindrical network with two arbitrary boundaries, which
contains multiple topological network models such as the regular cylindrical network, cobweb network, globe network,
and so on. We deduce three new and concise analytical formulae of potential and equivalent resistance for the complex
network of cylinders by using the RT-V method (a recursion-transform method based on node potentials). To illustrate the
multiplicity of the results we give a series of special cases. Interestingly, the results obtained from the resistance formulas
of cobweb network and globe network obtained are different from the results of previous studies, which indicates that our
research work creates new research ideas and techniques. As a byproduct of the study, a new mathematical identity is
discovered in the comparative study.
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1. Introduction
Resistor network research involves a wide range of fields,

not only of electrical problems but also of non-electric prob-
lems, such as chaotic quantum billiards that are simulated by a
circuit network,[1] waveguides in photonic crystals,[2] a simu-
lation of a non-Abelian Aharonov–Bohm effect,[3] the electri-
cal properties of conducting meshes,[4] field theory for scale-
free random networks,[5] lattice Green’s functions,[6–8] finite
difference time-domain method for electromagnetic waves,[9]

etc. In particular, researchers can study the Laplace equation
and Poisson equation[10] by the resistor network model. In
addition, the resistor network model has been published in
journals of various disciplines, including chemical, physical
chemistry, discrete mathematics, applied mathematics, engi-
neering technology, physics, and so on. Specifically, the muhi-
grid method for three-dimensional (3D) modeling of Poisson
equation published in Ref. [11]; resistance distance published
in Refs. [12,13]; resistance distance and Laplacian spectrum
published in Ref. [14]; a recursion formula for resistance dis-
tances and its applications and resistance distance in complete
n-partite graphs published in Refs. [15,16]; resistances be-
tween two nodes of a path network published in Ref. [17];
resistance distances in corona and neighborhood corona net-
works based on Laplacian generalized inverse approach pub-
lished in Ref. [18]; resistance distances in composite graphs
and some rules on resistance distance with applications pub-
lished in Refs. [19,20]; resistance between two nodes of a ring
network published in Ref. [21]; universal relation for transport
in non-sparse complex networks published in Ref. [22]; two-
point resistance on the centered-triangular lattice published in

Ref. [23]; exact evaluation of the resistance in an infinite face-
centered cubic network published in Ref. [24]; resistance cal-
culation of infinite three-dimensional triangular and hexagonal
prism lattices published in Ref. [25], and so on. The above re-
searches show that the research of resistor network model has
important theoretical value and potential application value in
many fields.

As is well known, computing the effective resistance be-
tween any two nodes in a resistor network is a difficult prob-
lem because it is required to solve the complex circuits and
complex matrix equations. For example, it may be difficult to
obtain the explicit expression of potential and resistance of the
complex networks with arbitrary boundaries when the bound-
ary resistor is complex. In fact, the boundary conditions are
very binding and will affect the calculation method and pro-
cess of the problem. Therefore, the solution of each complex
resistor network problem needs to create innovative ideas and
methods.

The resistor network research has been done for a long
time. In 1845 Kirchhoff established the basic circuit theory.
150 years later, Cserti[6] studied the infinite resistor network
by Green’s function technique, which is not suitable for com-
puting finite lattices. After some applications,[23–25] some new
issues were investigated by the Green’s function technique. In
order to solve the problem of finite resistor network, in 2004
Wu[26] presented a Laplacian matrix method, the method is
suitable for the lattice in definite and canonical boundary con-
ditions. The main weakness of this method is that it needs
to find the eigenvalues and eigenvectors of the matrices with
two directions, which makes it impossible to solve the resistor
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network with arbitrary boundaries. After 2004, several new
problems of resistor network were studied by the Laplacian
matrix approach.[27–32] From the above analysis, the Green
function method and the Laplace method cannot solve the re-
sistor network problem with arbitrary boundaries, but the re-
sistor networks with arbitrary boundaries come from reality,
and they need to be solved by researchers. Fortunately, in
2011 Tan created a new theory for studying arbitrary resistor
networks,[33] which now is called recursion–transform (RT)
theory of Tan.[29] The advantage of the RT method is that it
depends on a matrix in only one direction and the result is
expressed by a single sum. With the development of the RT
technique, a series of new resistor networks with zero resistor
edges was solved.[34–44] Recently, the Recursion–Transform
method was subdivided into two ways: one way is to use cur-
rent parameters to set up matrix equations,[36–42] which is sim-
ply called the RT-I method; another way is to use potential
parameters to set up matrix equations,[43,44] which is simply
called the RT-V method.

Investigations showed that many previous applications of
the RT (including RT-I and RT-V) theory focus on resistor net-
works with zero resistor boundaries or special cases, such as
the globe network[34,42] belongs to cylindrical network with
two zero resistor boundaries, the cobweb network[32,36,43] be-
longs to cylindrical network with one zero resistor boundary,
et al. Obviously, the complex resistor network without zero
resistance boundary condition also needs to be studied. Very
recently, new progress has been made: in Ref. [45] the n-step
network with ∆ structure was studied, in Ref. [46] the elec-
trical characteristics of rectangular network was investigated
by using the RT-V method, In Ref. [47] the electrical char-
acteristics of arbitrary rectangular network with an arbitrary
right boundary was studied by the RT-I approach. In Ref. [48]
a new resistor network theory was developed by unifying the
rectangular network and cylindrical network. However, be-
cause of the multifunctional nature of a cylindrical network
with two arbitrary boundaries, the authors in Ref. [48] have not
completely studied the conventional m×n cylindrical network
(it sees cylindrical networks as just one example of the basic
theory), and it is difficult for readers understand the results
it gives. Therefore, in this paper we will systematically intro-
duce the complete research process of cylindrical network, and
take �× n and ∆ × n for example to help readers understand
the physical implications of the results.

Consider a complex and anisotropic m×n cylindrical re-
sistor network as shown in Fig. 1, in which the grid layout
is continuous and the resistors are distributed anisotropy. In
this figure n and m denote the numbers of resistors along the
horizontal and cycle directions respectively, and the resistors r
and r0 in the respective horizontal (longitude) and loop (cycle
or latitude) directions except for two arbitrary boundary resis-

tors of r1 and r2. The difference between r and r0 in horizon-
tal and cycle directions implies the anisotropy of the network.
This paper focused on studying the electrical characteristics
(resistance and potential) of a cylindrical m× n resistor net-
work with two arbitrary boundaries by using the advanced RT-
V method, and we build three new theoretical formulae, thus
lead large problems to be resolved. Studies have shown that
the complex cylindrical networks with arbitrary boundaries are
the multifunctional network model because it can deduce var-
ious geometrical structures (Figs. 3–6 and 12). Thus a large
number of problems of resistor networks will be resolved in
this paper. We emphasize that what was studied in Ref. [40]
is only a special cylindrical network (with a zero resistance
on the bottom), but our research on a cylindrical network is
a general case of the network, which is completely different
from the scenario in Ref. [40] and to our knowledge, it has not
been studied before.
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Fig. 1. Nonregular cylindrical m×n resistor network, where m and n are the
numbers of resistors along the cycle and horizontal directions respectively,
with unit resistors r and r0 in the respective horizontal and loop directions
except for two arbitrary boundary resistors of r1 and r2.

For the sake of comparative study, here we introduce
a main result of cylindrical network. In 2004 Wu[26] gave
the accurate equivalent resistance of the regular cylindrical
network by the Laplacian matrix approach for the first time.
The so-called regular network refers to the boundary resistors
r1 = r2 = r0 in Fig. 1.

Consider a normative m× n cylindrical resistor network
(r1 = r2 = r0), where n and m are the numbers of resistors
along the horizontal and cycle directions respectively, and r
and r0 are, respectively, the resistors along the horizontal and
loop directions, Wu[26] gave the resistance between two nodes
d1(x1,y1) and d2(x2,y2) as follows:

Rm×n(d1,d2)

=
r0

n+1

(
|y1− y2|−

(y1− y2)
2

m

)
+

r
m
|x1− x2|+

1
m(n+1)

m−1

∑
i=1

×
n

∑
j=1

C2
x1, j +C2

x2, j−2Cx1, jCx2, j cos(y2− y1)θi

r−1
0 (1− cosθi)+ r−1(1− cosφ j)

, (1)

where Cxk, j = cos(xk +1/2)φ j, θi = 2iπ/m, φ j = jπ/(n+1).
Formula (1) is found for the first time by Wu. How-

ever, when the boundary resistor r1 and r2 are the arbitrary
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elements, the problem becomes an unresolved difficulty. In
addition, the equivalent resistance of Eq. (1) is in the double
summations not in a single sum.

The innovation and contribution of this paper is reflected
in the four aspects as follows. The first aspect is to general-
ize the RT theory, for example, previous RT theory relies on
the boundary condition of the zero resistance, but it no longer
depends on this condition in this paper. The second aspect is
the innovation of matrix calculation, for example, the previous
matrix transformation is all real numbers, but in this paper,
the plural matrix transformation is established (see Eqs. (23)
and (44) below). The third aspect is the analytical expres-
sions of the potential function and the equivalent resistance
of a complex cylindrical network with two arbitrary bound-
aries are given for the first time in this paper, and a series of
applications are given. The fourth aspect is the discovery of a
new mathematical identity from the point of view of physics,
which promotes the research and development of mathemati-
cal identity.

2. General results of electrical properties
2.1. Several parameter definitions

This article involves a more complex network problem,
and the expression of the result is more complex. Some param-
eters are specifically defined here to simplify the expressions
of results

C(i)
yk−y = cos(yk− y)θi,θi = 2iπ/m, (2)

λi = h+1−hcosθi +
√
(h+1−hcosθi)2−1,

λ̄i = h+1−hcosθi−
√
(h+1−hcosθi)2−1, (3)

with h = r/r0. Defining hs = rs/r0 (s = 1,2), where rs and r0

are the resistors in the network of Fig. 1, and defining

F(i)
k = (λ k

i − λ̄
k
i )/(λi− λ̄i),∆F(i)

k = F(i)
k+1−F(i)

k , (4)

α
(i)
s,x = ∆F(i)

x +(hs−1)∆F(i)
x−1,hs = rs/r0, (5)

β
(i)
x∨xs =

{
β
(i)
x,xs = α

(i)
1,xα

(i)
2,n−xs

, if x6 xs,

β
(i)
xs,x = α

(i)
1,xs

α
(i)
2,n−x, if x> xs,

(6)

G(i)
n = F(i)

n+1 +(h1 +h2−2)F(i)
n +(h1−1)(h2−1)F(i)

n−1. (7)

The above definitions of Eqs. (2)–(7) are used throughout the
paper, unless otherwise stated. In order to reduce the repetition
of the following expressions, a set of uniform definitions is
given here. To help the readers understand the meaning of each
symbol, their explanations are given below. Equations (5)–(7)
appear in all the equations of this paper because the expres-
sion of the electrical characteristics of the network depends on
α
(i)
k,s , β

(i)
k,s , and G(i)

k , and they are composition functions of F(i)
k

in Eq. (4), closely related, F(i)
k is a function of λi and λ̄i, where

θi in Eq. (3) is determined in Eq. (2).

In a nutshell, the above definitions of Eqs. (2)–(7) are
used throughout the paper. When you look at the calculation
below you will see that it is necessary to define a series of func-
tions because the electrical properties of the resistor network
are more complex, and these definitions are innovative.

2.2. Potential expression of any node

Consider a complex m× n cylindrical network shown in
Fig. 1, two arbitrary resistors are placed on the left- and right-
hand side of the network, where the resistor parameters ri and
voltage parameters V (y)

x are shown in Figs. 1 and 2, and the ori-
gin of the rectangular coordinate system is specified at point
A0(0,0). Assume that the electric current J goes from the
d1(x1,y1) to the d2(x2,y2). Expressing the nodal potential at
d(x,y) by Um×n(x,y) = V (y)

x and choosing the reference po-
tential such that ∑

m−1
i=0 V (i)

0 = 0, which means hat the sum of
the voltages of all the nodes on the left boundary is zero, the
analytic expression of the potential function of d(x,y) in the
cylindrical m×n resistor network can be written as

Um×n(x,y)
J

=
x1− xτ

m
r

+
r0

2m

m−1

∑
i=1

β
(i)
x1∨xC

(i)
y1−y−β

(i)
x2∨xC

(i)
y2−y

(1− cosθi)G
(i)
n

, (8)

where θi = 2iπ/m, xτ is a piecewise function

xτ = {x1,06 x6 x1}∪{x,x1 6 x6 x2}

∪{x2,x2 6 x6 n} , (9)

and β
(i)
k,s and G(i)

k are defined in Eqs. (6) and (7) respectively.

When taking the reference voltage by ∑
m−1
i=0 V (i)

n = 0,
which means that the sum of the voltages of all the nodes on
the right boundary is zero, the potential function of d(x,y) is

Um×n(x,y)
J

=
x2− xτ

m
r

+
r0

2m

m−1

∑
i=1

β
(i)
x1∨xC

(i)
y1−y−β

(i)
x2∨xC

(i)
y2−y

(1− cosθi)G
(i)
n

, (10)

where all the parameters are the same as the above. Please
note that the difference between Eq. (8) and Eq. (10) lies only
in the difference in their first term, but the remaining terms are
the same, which indicates that the choice of different reference
points only affects the first factor of the equation.

Why do we define Eq. (9)? This is because equations (8)
and (10) have to be expressed by three piecewise equations if
there is no definition of Eq. (9). To understand Eqs. (8) and
(9), given here is the explanation: when 0 6 x 6 x1, there is
x1− xτ = 0; when x1 6 x6 x2, there is x1− xτ = x1− x; when
x2 6 x6 n, there is x1− xτ = x1− x2.
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Fig. 2. Resistor sub-network with resistors and potential parameters.

2.3. Two-point resistance

Consider an arbitrary cylindrical m× n resistor network
shown in Fig. 1, where two arbitrary resistors r1 and r2 are
placed on the left- and right-hand side of the network. The an-
alytic expression of effective resistance between two arbitrary
nodes d1(x1,y1) and d2(x2,y2) in the network is given by

Rm×n(d1,d2) =
|x2− x1|

m
r

+
r0

2m

m−1

∑
i=1

β
(i)
1,1−2β

(i)
1,2 cos(yθi)+β

(i)
2,2

(1− cosθi)G
(i)
n

, (11)

where θi = 2iπ/m, y = y2− y1, x1 6 x2, and β
(i)
k,s and G(i)

k are,
respectively, defined in Eqs. (6) and (7). And 06 {m,n}6 ∞,
which represent the arbitrary finite and infinite networks, re-
spectively.

The above three main results of Eqs. (8), (10), and (11)
are the first finding of this paper, which is a theoretical and
technical innovation. Their proofs and applications are given
below.

3. Methods and theoretical calculation
RT-V method is pioneered by Tan[43] in 2017. We are

going to derive analytic formulae (8), (10), and (11) by using
the RT-V method. The derivation of the potential function is
a systematic work, including a series of steps, we will derive
them through the following five stages.

Stage-1
Building a discrete Poisson equation by the sub-network

of Fig. 2. Using Kirchhoff law (∑r−1
i Vk = 0) to establish the

voltage equations along the latitude (vertical) direction, we ob-
tain two sets of difference equations for the network of Fig. 1

V (0)
k+1 = (2+2 h)V (0)

k −V (0)
k−1−hV (m−1)

k −hV (1)
k ,

V (i)
k+1 = (2+2 h)V (i)

k −V (i)
k−1−hV (i−1)

k −hV (i+1)
k , (12)

where h = r/r0, and the i = 0 in Eq. (12) means that the volt-
age equation is established on the X axis. The discrete Eq. (12)
does not take into account the conditions of the power input

node, when the conditions of the power input node (inputing
current J at d1(x1,y1) and outputing J at d2(x2,y2)) are taken
into account, equation (12) can be rewritten as a matrix equa-
tion as follows:

𝑉k+1 =𝐵m𝑉k−𝑉k−1− r𝐼kδk,x(δy,y1 −δy,y2), (13)

where δk,k = 1 and δk,x = 0 (k 6= x), and 𝑉k is an m×1 column
matrix, and can be written as

𝑉k =
[
V (0)

k , V (1)
k , V (2)

k , . . . , V (m−1)
k

]T
, (14)

and 𝐼k is

𝐼k = [J, J, J, . . . , J]T , (15)

and 𝐵m is the matrix built along the vertical direction

𝐵m =


2+2h −h 0 0 −h
−h 2(1+h) −h 0 0

...
...

. . .
...

...
0 0 −h 2(1+h) −h
−h 0 0 −h 2+2h

 . (16)

Stage-2
Setting up the boundary condition equations on the left

and right edges in the network of Fig. 1. Applying the Kirch-
hoff’s law (∑r−1

i Vk = 0) to each boundary of left and right
edges, we obtain two matrix equations that relate the left and
right boundary as follows:

h1𝑉1 = [𝐵m− (2−h1)𝐸]𝑉0, (17)

h2𝑉n−1 = [𝐵m− (2−h2)𝐸]𝑉n, (18)

where hs = rs/r0 (s = 1,2), 𝐸 is the m×m unit matrix, and
matrix 𝐵m is given by Eq. (16).

Equations (13)–(18) are all the equations we need in order
to derive the potential function. However, we cannot directly
solve this equation. In order to solve this difficulty we create
new techniques by using the RT theory.[36–38,43] In the follow-
ing we first give the transform technique, and then give their
solution.

Stage-3
Building matrix transform. Firstly, we work out the

eigenvalue ti of matrix 𝐵m, solving det |𝐵m− t𝐸|= 0 to yield

ti = 2(1+h)−2hcosθi, (19)

where θi = 2iπ/m (i = 0,1,2, . . .m−1).
Next, transform Eqs. (13), (17), and (18) by the following

methods

𝑃m𝐵m = diag{t0, t1, . . . , tm−1}𝑃m, (20)

𝑋k = 𝑃m𝑉k or 𝑉k = (𝑃m)
−1𝑋k, (21)
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where 𝑋k =
[
X (0)

k , X (1)
k , . . . , X (m−1)

k

]T
. Suggesting that Pi is

the row matrix of 𝑃m, after rigorous calculation, the Pi can be
obtained as follows:

Pi = [g0,i, g1,i, g2,i, . . . , gm−1,i] , (22)

with

gk,i = exp(ikθi) and θi = 2iπ/m, (i> 0), (23)

where i2 =−1. Thus, multiplying Eq. (13) from the left-hand
side by 𝑃m, we obtain

X (i)
k+1 = tiX

(i)
k −X (i)

k−1− rJ(δx1,kgy1,i−δx2,kgy2,i), (24)

where equations (20) and (21) have been used.
Using a transformation technique similar to the one

above, applying 𝑃m to Eqs. (17) and (18), we obtain

h1X (i)
1 = (ti +h1−2)X (i)

0 , (25)

h2X (i)
n−1 = (ti +h2−2)X (i)

n . (26)

The above equations (19)–(26) are all the transformation equa-
tions in order to evaluate the potential.

Stage-4
Solving Eqs. (24)–(26). For solving X (i)

k we should un-
fold Eq. (24) since it contains several piecewise functions.
Thus, we obtain the piecewise solution after solving Eq. (24)
as follows:

X (i)
k = X (i)

1 Fk−X (i)
0 Fk−1, 06 k 6 x1, (27)

X (i)
x1+1 = tiX

(i)
x1 −X (i)

x1−1− rJ exp(iy1θi), (28)

X (i)
k = X (i)

x1+1Fk−x1 −X (i)
x1 Fk−x1−1, x1 6 k 6 x2, (29)

X (i)
x2+1 = tiX

(i)
x2 −X (i)

x2−1 + rJ exp(iy2θi), (30)

X (i)
k = X (i)

x2+1Fk−x2 −X (i)
x2 Fk−x2−1, x2 6 k 6 n, (31)

where F(i)
k = (λ k

i − λ̄ k
i )/(λi− λ̄i) is defined in Eq. (4), and λi

and λ̄i are defined in Eq. (3), which are the two roots of the
characteristic equation of λ 2 = tiλ −1 from Eq. (24).

Please note that we must consider two cases: i = 0 and
i > 1, because there is θ0 = 0 (θi = 2iπ/m) if i = 0. By
Eq. (19) we have the eigenvalue t0 = 2, but 1− cosθi appears
in the denominator of Eqs. (8), (10), and (11). So we need to
consider the additional solution of equations when θ0 = 0.

First we consider the case of i> 1, by Eqs. (25)–(31), we
obtain

X (i)
k =

β
(i)
k∨x1

exp(iy1θi)−β
(i)
k∨x2

exp(iy2θi)

(ti−2)G(i)
n

rJ, (32)

where β
(i)
k,s and G(i)

k are, respectively, defined in Eqs. (6) and
(7).

Next, we consider the case of i = 0⇒ θ0 = 0, by Eqs. (3)
and (23), we have

λ0 = λ̄0 = 1 and gk,0 = exp(ikθ0) = 1. (33)

Applying limit λ0→ 1 to Eqs. (4) and (5), we have

F(0)
k = k, ∆F(0)

k = 1,

α
(0)
s,x = ∆F(0)

x +(hs−1)∆F(0)
x−1 = hs. (34)

In addition, from Eqs. (25) and (26) with t0 = 2, we have

X (0)
1 = X (0)

0 ,X (0)
n−1 = X (0)

n . (35)

Substituting Eqs. (33)–(35) into Eqs. (27)–(31), we have

X (0)
k = X (0)

0 , (06 k 6 x1), (36)

X (0)
x1+1 = 2X (0)

x1 −X (0)
x1−1− rJ, (37)

X (0)
k = (k− x1)X

(0)
x1+1− (k− x1−1)X (0)

x1 , (x1 6 k 6 x2), (38)

X (0)
x2+1 = 2X (0)

x2 −X (0)
x2−1 + rJ, (39)

X (0)
k = (k− x2)X

(0)
x2+1− (k− x2−1)X (0)

x2 , (x2 6 k 6 n). (40)

Thus, solving Eqs. (35)–(40), we obtain three solutions below

X (0)
k = X (0)

0 , 06 k 6 x1, (41)

X (0)
k = X (0)

0 +(x1− k)rJ, x1 6 k 6 x2, (42)

X (0)
k = X (0)

0 +(x1− x2)rJ, x2 6 k 6 n. (43)

Obviously, X (0)
0 is a constant to be determined, so we use the

reference potential to determine the constant of X (0)
0 .

From Eqs. (21)–(23), we obtain
X (0)

k

X (1)
k
...

X (s)
k

 =


1 1 1 . . . 1
1 exp(iθ1) exp(i2θ1) . . . exp(isθ1)
...

...
...

. . .
...

1 exp(iθs) exp(i2θs)
... exp(isθs)



×


V (0)

k

V (1)
k
...

V (s)
k

 , (44)

where s = m− 1 (this definition is for simplicity), and θi =

2iπ/m. By Eq. (44) we have

X (0)
k =

m−1

∑
i=0

V (i)
k . (45)

Since the zero voltage nodes can be assumed and the poten-
tial is a scalar relative to a reference point, so we can assume
(taking k = 0)

m−1

∑
i=0

V (i)
0 = 0⇔ X (0)

0 = 0. (46)
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Substituting Eq. (46) into Eqs. (41)–(43), we obtain a unified
expression

X (0)
k = (x1− xτ)rJ, 06 k 6 n, (47)

where xτ is defined in Eq. (9). The importance of Eq. (47)
should not be underestimated because it is a key solution that
it allows us to study resistor networks without relying on the
boundary conditions with zero resistance.

In Eq. (46), the sum of the voltages on the left boundary is
chosen to be zero, we can also choose the sum of the voltages
on the right boundary to be zero, so, equation (45) is used to
obtain (taking k = n)

m−1

∑
i=0

V (i)
n = 0⇔ X (0)

n = 0, X (0)
0 = (x2− x1)rJ. (48)

Substituting Eq. (48) into Eqs. (41)–(43), we obtain a unified
expression

X (0)
k = (x2− xτ)rJ, 06 k 6 n, (49)

where xτ is defined in Eq. (9).
Stage-5

Using inverse transformation to derive the general for-
mulae (8) and (10). According to the exact calculation, by
Eq. (44) we can obtain the inverse transformation equation

V (0)
k

V (1)
k
...

V (s)
k

=
1
m


1 1 · · · 1
1 exp(−iθ1) · · · exp(−isθs)
...

...
. . .

...
1 exp(−isθ1) · · · exp(−isθs)



×


X (0)

k

X (1)
k
...

X (s)
k

 , (50)

where s = m−1 (this definition is made for simplicity).
Thus, by Eq. (50), we obtain (y> 1)

V (y)
k =

1
m

(
X (0)

k +
m−1

∑
i=1

X (i)
k exp(−iyθi)

)
. (51)

When taking ∑
m−1
i=0 V (i)

0 = 0, there is Eq. (47). The substitution
of Eqs. (32) and (47) into Eq. (51) yields

Um×n(x,y)
J

=
x1− xτ

m
r+

r0

m

m−1

∑
i=1

β
(i)
x1∨xC

(i)
y1−y−β

(i)
x2∨xC

(i)
y2−y

2(1− cosθi)G
(i)
n

+ i
r0

m

m−1

∑
i=1

β
(i)
x1∨xsin[(y1− y)θi]−β

(i)
x2∨xsin[(y2− y)θi]

2(1− cosθi)G
(i)
n

. (52)

Because the element rk in the network is a real number, the

potential U(x,y) must be a real number. Thus, equation (8) is

derived by extracting the real part of Eq. (52).

Again, when taking ∑
m−1
i=0 V (i)

n = 0, there is Eq. (49), the

substitution of Eqs. (32) and (49) into Eq. (51), then equa-

tion (10) is proved.

The above five stages are the specific elaboration of RT-V

theory, and can be used to calculate the electrical character-

istics of cylindrical networks. Such as stage-1 setting up the

main matrix equation, stage-2, setting up the matrix equation
with boundary conditions of the left and right edges, stage-3,
creating matrix transform, stage-4, solving the matrix equa-
tions, and stage-5, deriving the potential by the inverse trans-
form.

Next, we derive Eq. (11). By using Ohm’s law, we obtain

Rm×n(d1,d2) = [U(x1,y1)−U(x2,y2)]
1
J
. (53)

Using Eq. (8) with x = {x1,x2} and y = {y1,y2}, we have

Um×n(x1,y1)

J
=

r0

2m

m−1

∑
i=1

β
(i)
x1,x1 −β

(i)
x1,x2 cos(y2− y1)θi

(1− cosθi)G
(i)
n

, (54)

Um×n(x2,y2)

J
=

x1− x2

m
r+

r0

2m

m−1

∑
i=1

β
(i)
x1,x2 cos(y2− y1)θi−β

(i)
x2,x2

(1− cosθi)G
(i)
n

. (55)

By Eqs. (54) and (55), we have

Um×n(x1,y1)

J
−Um×n(x2,y2)

J
=

x2− x1

m
r+

r0

m

m−1

∑
i=1

(
β
(i)
x1,x1 −β

(i)
x1,x2 cos(y2− y1)θi

2(1− cosθi)G
(i)
n

− β
(i)
x1,x2 cos(y2− y1)θi−β

(i)
x2,x2

2(1− cosθi)G
(i)
n

)
. (56)

Simplifying Eq. (56), together with Eq. (53), we obtain

Rm×n(d1,d2) =
Um×n(x1,y1)

J
−Um×n(x2,y2)

J
=

x2− x1

m
r+

r0

2m

m

∑
i=1

β
(i)
x1,x1 −2β

(i)
x1,x2 cos(y2− y1)θi +β

(i)
x2,x2

(1− cosθi)G
(i)
n

. (57)
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Obviously, from Eq. (57), equation (11) is proved immedi-
ately. Similarly, equation (11) can also be proved by Eq. (10),
which indicates that the equivalent resistance is independent
of the choice of voltage reference point.

In particular, since the RT-V theory is matured, and all
results can be strictly calculated by the RT theory. All the cal-
culation processes and conclusions are self-consistent, without
any guessing factors, so our results are necessarily correct, and
the following special cases verify their correctness again.

4. Applications and discussion
In subsequent sections we consider the applications of

formulae to arbitrary lattices. In all applications, we stipulate
that all parameters in Eqs. (2)–(7) are applied to all resistor
networks, and denote the resistors along the two principal di-
rections by r and r0 except for resistors on the left-right bound-
aries, and the input and output node of current are respectively
at d1(x1,y1) and d2(x2,y2).

4.1. Applications of potential formula

Formula (8) is a general result because the network of
Fig. 1 is very complex and has not been resolved before,
which includes a lot of resistor network models, where each
of the different boundary resistors represents a different net-
work structure. So formula (8) can create many interesting
results.

Application 1 Consider an regular m×n cylindrical net-
work of Fig. 1 with r1 = r2 = r0, selecting ∑V (i)

0 = 0, by
Eq. (8) we have the nodal potential as follows:

U(x,y)
J

=
x1− xτ

m
r+

r0

2m

m−1

∑
i=1

β
(i)
x1∨xC

(i)
y1−y−β

(i)
x2∨xC

(i)
y2−y

(1− cosθi)F
(i)
n+1

, (58)

where β
(i)
x∨xk

reduces to β
(i)
x,xs = ∆F(i)

x ∆F(i)
n−xs

.
Application 2 Consider a non-regular m× n cylindrical

network as shown in Fig. 1. Defining C(i)
yk−y = cos(yk − y)θi

with θi = 2iπ/m, and selecting ∑V (i)
0 = 0, when x2 = x1, the

potential of any node d(x,y) in the finite and sem-infinite net-
works can be written respectively as

Um×n(x,y)
J

=
r0

2m

m−1

∑
i=1

C(i)
y1−y−C(i)

y2−y

(1− cosθi)G
(i)
n

β
(i)
x1∨x, (59)

Um×∞(x,y)
J

=
r

2m

m−1

∑
i=1

C(i)
y1−y−C(i)

y2−y√
(1+h−hcosθi)2−1

λ̄
|x1−x|
i . (60)

Here, equation (60) is generated by taking the limit of
Eq. (59) when n→ ∞ and x1→ ∞.

Application 3 Consider an m×n cylindrical network of
Fig. 1. When r2 = 0, figure 1 degrades into a cobweb net-
work as shown in Fig. 3. Selecting ∑V (i)

0 = 0 as the reference

potential, by Eq. (8) we have the nodal potential

U(x,y)
J

=
x1− xτ

m
r+

r
m

m−1

∑
i=1

β
(i)
x1∨xC

(i)
y1−y−β

(i)
x2∨xC

(i)
y2−y

∆F(i)
n +(h1−1)∆F(i)

n−1

, (61)

where β
(i)
xs∨x is redefined as β

(i)
x∨xs = α

(i)
1,xF(i)

n−xs
(if x 6 xs) and

β
(i)
x∨xs = α

(i)
1,xs

F(i)
n−x (if x> xs).

In particular, when d1(0,y1) is on the left edge, and
d2(n,y2) is on the right edge, equation (61) reduces to

U(x,y)
J

=− x
m

r+
r1h
m

m−1

∑
i=1

F(i)
n−x cos(y1− y)θi

∆F(i)
n +(h1−1)∆F(i)

n−1

. (62)

Fig. 3. m×n cobweb network with arbitrary left boundary resistor of r1.

Application 4 Consider an m× n resistor network of
Fig. 1. When r2 = 0, figure 1 degrades into a cobweb net-
work as shown in Fig. 3. Selecting ∑V (i)

n = 0 as the reference
potential, by Eq. (10) we have the nodal potential

U(x,y)
J

=
x2− xτ

m
r+

r
m

m−1

∑
i=1

β
(i)
x1∨xC

(i)
y1−y−β

(i)
x2∨xC

(i)
y2−y

∆F(i)
n +(h1−1)∆F(i)

n−1

, (63)

where β
(i)
xs∨x is exactly the same as β

(i)
xs∨x appearing in Eq. (61).

In particular, when d1(0,y1) is on the left edge, and
d2(n,y2) is on the right edge, equation (63) reduces to

U(x,y)
J

=
n− x

m
r+

r1h
m

m−1

∑
i=1

F(i)
n−x cos(y1− y)θi

∆F(i)
n +(h1−1)∆F(i)

n−1

. (64)

Please note that the cobweb network with an arbitrary bound-
ary has not been resolved before, in previous work only the
normal cobweb network (the boundary resistor is r1 = r0) was
studied.[43] So, equations (61) and (63) are two original re-
sults.

Application 5 Consider an arbitrary m×n globe network
as shown in Fig. 4. That is to say, figure 1 degrades into a globe
network when r1 = r2 = 0. Selecting ∑V (i)

0 = 0, from Eq. (8)
we have the nodal potential

Um×n(x,y)
J

=
x1− xτ

m
r+

r
m

m−1

∑
i=1

β
(i)
x1∨xC

(i)
y1−y−β

(i)
x2∨xC

(i)
y2−y

F(i)
n

, (65)

where we redefine β
(i)
x∨xs = F(i)

x F(i)
n−xs

(if x 6 xs) and β
(i)
x∨xs =

F(i)
xs F(i)

n−x (if x> xs).
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In particular, when d1(0,y1) is at the left pole, and
d2(n,y2) is at the right pole, equation (65) reduces to

U(x,y)
J

=− x
m

r. (66)

Formula (66) satisfies U(0,0) = 0, which is very simple and
very interesting because the potential distribution is only re-
lated to the x and unrelated to y, and shows the nodal potential
is equal in the same latitude.

In addition, when d1(0,y1) is at the left pole, and d2(n,y2)

is at the right pole, and r1 = r2 = 0, selecting ∑V (i)
n = 0, by

Eq. (10) we have the nodal potential as follows:

U(x,y)
J

=
x
m

r. (67)

Theoretical formulae (8), (10), and (11) are three universal for-
mulae, relatively esoteric, which contain a variety of condi-
tions, wide application, far-reaching significance. The follow-
ing simple examples will help the readers further understand
the meaning of formula (8).

Fig. 4. Arbitrary m× n globe network, where m and n are the number of
grids along the cycle direction and horizontal direction respectively, with
the resistors r and r0 in horizontal direction and loop direction, respectively.

Application 6 When m = 4, figure 2 degrades into a 3D
�×n resistor network as shown in Fig. 5. By Eq. (2) we have
θi = iπ/2, and substituting it into Eq. (3) yields

λ1 = λ3 = 1+h+
√

(1+h)2−1,

λ2 = 1+2h+
√
(1+2 h)2−1. (68)

So we have β
(3)
t,s = β

(1)
t,s , G(3)

n = G(1)
n , θ1 = π/2, and θ2 = π .

Assume that the input current J is at Ax1(x1,0), and the output
current J is at Px2(x2,y2), where Pk represents the nodes of Ak,
Bk, Ck, and Dk, and VA0 +VB0 +VC0 +VD0 = 0 is selected. By
Eq. (8), we have the nodal potential

U�×n(x,y)
J

=
x1− xτ

4
r+ r0

β
(1)
x1∨xC

(1)
y −β

(1)
x2∨xC

(1)
y2−y

4G(1)
n

+ r0
β
(2)
x1∨xC

(2)
y −β

(2)
x2∨xC

(2)
y2−y

16G(2)
n

, (69)

where C(i)
yk−y = cos[(yk− y)iπ/2] and xτ is defined in Eq. (9).

It is not hard to see that Eq. (69) is still quite profound in
terms of understanding its physical meaning. Since the node

potential value is related to the input position of the power
source, different input positions of the power supply will gen-
erate different potential values. To understand the nature of
the problem easily, we list the following five cases.

C0

D0

A0

B0

Dn

Cn

Bn

An

r0
r0

r0

r2

r1

r rr

r2

r0

r0

r1

Fig. 5. 3D �×n network with resistors r and r0 in respective horizontal and
vertical directions except for r1 and r2 on the left and right edges.

Case-1 Assume that the input current J is at A0(0,0) and
the output current J is at B0(0,1), and select VA0 +VB0 = 0,
then by Eq. (69) we will have the nodal potential

U�×n(x,y)
J

= r1
C(1)

y −C(1)
1−y

4G(1)
n

α
(1)
2,n−x

+ r1
C(2)

y −C(2)
1−y

16G(2)
n

α
(2)
2,n−x, (70)

where C(i)
k−y = cos[(k − y)iπ/2], α

(i)
2,n−x = ∆F(i)

n−x + (h2 −
1)∆F(i)

n−x−1. However, equation (70) still contains multiple re-
sults, such as the nodal potential on different axes

U�×n(Ax)

J
= r1

α
(1)
2,n−x

4G(1)
n

+ r1
α
(2)
2,n−x

8G(2)
n

, (71)

U�×n(Bx) =−U�×n(Ax), (72)

U�×n(Cx)

J
=−r1

α
(1)
2,n−x

4G(1)
n

+ r1
α
(2)
2,n−x

8G(2)
n

, (73)

U�×n(Dx) =−U�×n(Cx). (74)

Equations (72) and (74) reveal the physical meaning. Since
the input positions of the power source are at A0(0,0) and
B0(0,1) together with the assumption of VA0 +VB0 = 0, we
have U�×n(Ax)+U�×n(Bx) = 0 and U�×n(Dx) =−U�×n(Cx).
This shows that the potential of symmetric nodes has symme-
try, which is completely consistent with the actual situation.

Case-2 Assume that the input current J is at A0(0,0), and
the output current J is at C0(0,2), and select VA0 +VC0 = 0 as
the reference potential, then by Eq. (69) we will have the nodal
potential

U�×n(x,y)
J

= r1
C(1)

y −C(1)
2−y

4G(1)
n

α
(1)
2,n−x

+r1
C(2)

y −C(2)
2−y

16G(2)
n

α
(2)
2,n−x, (75)

where C(i)
k−y = cos[(k− y)iπ/2]. However, equation (75) still
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contains multiple results, such as the nodal potential on differ-
ent axes

U�×n(Ax)

J
= r1

α
(1)
2,n−x

2G(1)
n

, (76)

U�×n(Bx) =U�×n(Dx) = 0, (77)

U�×n(Cx) =−U�×n(Ax). (78)

Equations (76)–(78) reveal the physical meaning. Because
axis A0An and axis C0Cn are symmetric in Fig. 5, clearly, when
selecting VA0 +VC0 = 0, there is U�×n(Ax) +U�×n(Cx) = 0
which satisfies Eq. (78), shows that the potential of symmetric
nodes has symmetry.

Case-3 Assume that the input current is at A0(0,0), and
the output current is at An(n,0), and select VA0 +VB0 +VC0 +

VD0 = 0 as the reference potential, then by Eq. (69) we will
have the nodal potential

U�×n(x,y)
J

= − x
4

r+ r0
h1α

(1)
2,n−x−h2α

(1)
1,x

4G(1)
n

C(1)
y

+r0
h1α

(2)
2,n−x−h2α

(2)
1,x

16G(2)
n

C(2)
y , (79)

where hk = rk/r0 and C(i)
y = cos(yiπ/2). However, equa-

tion (79) still contains multiple results, such as

U�×n(Ax)

J
=− x

4
r+ r0

h1α
(1)
2,n−x−h2α

(1)
1,x

4G(1)
n

+ r0
h1α

(2)
2,n−x−h2α

(2)
1,x

16G(2)
n

, (80)

U�×n(Bx)

J
=

U�×n(Dx)

J
=− x

4
r− r0

h1α
(2)
2,n−x−h2α

(2)
1,x

16G(2)
n

, (81)

U�×n(Cx)

J
=− x

4
r− r0

h1α
(1)
2,n−x−h2α

(1)
1,x

4G(1)
n

+ r0
h1α

(2)
2,n−x−h2α

(2)
1,x

16G(2)
n

. (82)

Obviously, according to the symmetry of node potential, equa-
tion (81) is completely consistent with the actual situation. In
addition, we find that U�×n(Ax)+ 2U�×n(Bx)+U�×n(Cx) =

−xrJ, which is interesting and shows that we can obtain an-
other node potential if we obtain two of the three results of
U�×n(Ax), U�×n(Bx), and U�×n(Cx).

Case-4 Assume that the input current is at A0(0,0), and
the output current is at Bn(n,1), and select VA0 +VB0 +VC0 +

VD0 = 0 as the reference potential, then by Eq. (69) we will
have the nodal potential

U�×n(x,y)
J

= − x
4

r+ r0
h1α

(1)
2,n−xC

(1)
y −h2α

(1)
1,x C(1)

1−y

4G(1)
n

+r0
h1α

(2)
2,n−xC

(2)
y −h2α

(2)
1,x C(2)

1−y

16G(2)
n

, (83)

where hk = rk/r0 and C(i)
k−y = cos[(k−y)iπ/2]. However, equa-

tion (83) still contains multiple results, such as

U�×n(Ax)

J
=− x

4
r+ r1

α
(1)
2,n−x

4G(1)
n

+ r0
h1α

(2)
2,n−x +h2α

(2)
1,x

16G(2)
n

, (84)

U�×n(Bx)

J
=− x

4
r− r2

α
(1)
1,x

4G(1)
n

− r0
h1α

(2)
2,n−x +h2α

(2)
1,x

16G(2)
n

, (85)

U�×n(Cx)

J
=− x

4
r− r1

α
(1)
2,n−x

4G(1)
n

+ r0
h1α

(2)
2,n−x +h2α

(2)
1,x

16G(2)
n

, (86)

U�×n(Dx)

J
=− x

4
r+ r2

α
(1)
1,x

4G(1)
n

− r0
h1α

(2)
2,n−x +h2α

(2)
1,x

16G(2)
n

. (87)

Case-5 Assume that the input current is at A0(0,0), and
the output current is at Cn(n,3), and select VA0 +VB0 +VC0 +

VD0 = 0 as the reference potential, then by Eq. (69) we will
have the nodal potential

U�×n(x,y)
J

= − x
4

r+ r0
h1α

(1)
2,n−xC

(1)
y −h2α

(1)
1,x C(1)

2−y

4G(1)
n

+r0
h1α

(2)
2,n−xC

(2)
y −h2α

(2)
1,x C(2)

2−y

16G(2)
n

, (88)

where hk = rk/r0 and C(i)
k−y = cos[(k−y)iπ/2]. However, equa-

tion (88) still contains multiple results, such as

U�×n(Ax)

J
=− x

4
r+ r0

h1α
(1)
2,n−x +h2α

(1)
1,x

4G(1)
n

+ r0
h1α

(2)
2,n−x−h2α

(2)
1,x

16G(2)
n

, (89)

U�×n(Bx)

J
=

U�×n(Dx)

J
=− x

4
r− r0

h1α
(2)
2,n−x−h2α

(2)
1,x

16G(2)
n

, (90)

U�×n(Cx)

J
=− x

4
r− r0

h1α
(1)
2,n−x +h2α

(1)
1,x

4G(1)
n

+ r0
h1α

(2)
2,n−x−h2α

(2)
1,x

16G(2)
n

. (91)

Obviously, according to the symmetry of node potential, equa-
tion (90) is completely consistent with the actual situation.

The above series of results (69)–(91) is the first to be
found in this paper, which basically explain the basic mean-
ing of formula (8) and can effectively help readers understand
and use formula (8).

4.2. Applications of resistance formula

Formula (11) is a precise and profound result since the
network of Fig. 1 is very complex and has not been resolved
before and includes a lot of resistor network models, where
each of the different boundary resistor ri represents a different
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network structure. In particular, taking some specific values of
r1 and r2, and assuming x1 6 x2, equation (11) gives rise to a
series of special cases below.

Case A When r1 = r2 = r0, figure 1 degrades into a nor-
mal m×n cylindrical network, then the resistance of Eq. (11)
reduces to

Rm×n(d1,d2) =
|x2− x1|

m
r

+
r0

2m

m−1

∑
i=1

β
(i)
1,1−2β

(i)
1,2 cos(yθi)+β

(i)
2,2

(1− cosθi)F
(i)
n+1

, (92)

where β
(i)
k,s reduces to β

(i)
k,s = ∆F(i)

xk ∆F(i)
n−xs

, and y = y1−y2. The

normal cylindrical network has been studied in Ref. [26], lead-

ing to Eq. (1) with a double sum. Obviously, our result (92)

is different from Eq. (1). This shows that the effective resis-

tance can be expressed in different forms for the same resistor

network.

Case B Consider a non-regular m×n cylindrical network

of Fig. 1, when r1 = r0 and r2 is an arbitrary resistor, the resis-

tance of Eq. (11) reduces to

Rm×n(d1,d2) =
|x2− x1|

m
r+

r0

2m

m−1

∑
i=1

β
(i)
1,1−2β

(i)
1,2 cos(yθi)+β

(i)
2,2

(1− cosθi)[F
(i)
n+1 +(h2−1)F(i)

n ]
, (93)

where β
(i)
k,s reduces to β

(i)
k,s = ∆F(i)

xk [∆F(i)
n−xs

+(h2−1)∆F(i)
n−xs−1], and θi = 2iπ/m, y = y2− y1.

Case C When r2 = 0, the right boundary of Fig. 1 collapses to a pole, so the non-regular cylindrical network degrades into
a cobweb network with an arbitrary boundary resistor r1 as shown in Fig. 3. By Eq. (11) we obtain the resistance formula

Rm×n(d1,d2) =
|x2− x1|

m
r+

r
m

m−1

∑
i=1

β
(i)
1,1−2β

(i)
1,2 cos(yθi)+β

(i)
2,2

∆F(i)
n +(h1−1)∆F(i)

n−1

, (94)

where β
(i)
k,s is re-defined as β

(i)
k,s = [∆F(i)

xk +(h1−1)∆F(i)
xk−1]F

(i)
n−xs

.
In particular, selecting h1 = 1 and h2 = 0, the resistor network of Fig. 3 degrades into a regular cobweb network, the

resistance of Eq. (94) reduces to

Rm×n(d1,d2) =
|x2− x1|

m
r+

r
m

m−1

∑
i=1

β
(i)
1,1−2β

(i)
1,2 cos(yθi)+β

(i)
2,2

∆F(i)
n

, (95)

where β
(i)
k,s is redefined as β

(i)
k,s = ∆F(i)

xk F(i)
n−xs

.
Please note that the regular cobweb network was studied in Refs. [28] and [35] but the results in Refs. [28] and [35] are

different from those from Eq. (95). That is because reference [35] chooses the coordinates in different directions to set up the
matrix equations, where reference [35] set up matrix along the longitude, but this paper sets up matrix along the latitude, and
reference [28] studied the problem by the WU’s method which gives the result in double sum.

Case D When h1 = h2 = 0 (r1 = r2 = 0), the left and right boundaries collapse respectively to two poles, the network of
Fig. 1 degrades into an m×n globe network as shown in Fig. 4, by Eq. (11) we have

Rm×n(d1,d2) =
|x2− x1|

m
r+

r
m

m−1

∑
i=1

F(i)
x1 F(i)

n−x1
−2F(i)

x1 F(i)
n−x2

cos(yθi)+F(i)
x2 F(i)

n−x2

F(i)
n

, (96)

where y = y1− y2 and θi = 2iπ/m.
Please note that the globe network was studied in Ref. [34], but the result in Ref. [34] is different from that from Eq. (96).

That is because they chose coordinates in different directions to set up the matrix equations, which implies that the effective
resistance can be expressed in different forms for the same resistor network.

Case E Consider a complex m×n cylindrical network of Fig. 1, when d1(0,0) is on the left edge and d2(n,y) is on the right
edge, the resistance between two edges is

Rm×n({0,0},{n,y}) =
n
m

r+
r0

2m

m−1

∑
i=1

h1α
(i)
2,n +h2α

(i)
1,n−2h1h2 cos(yθi)

(1− cosθi)G
(i)
n

. (97)

In particular, when h1 = h2 = 1, equation (97) reduces to

Rm×n({0,0},{n,y}) =
n
m

r+
r0

m

m−1

∑
i=1

∆F(i)
n − cos(yθi)

(1− cosθi)F
(i)
n+1

. (98)
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When h1 = 0 and h2 = 1, equation (97) reduces to

Rm×n({0,0},{n,y}) =
n
m

r+
r
m

m−1

∑
i=1

F(i)
n

∆F(i)
n

. (99)

Case F Consider a complex m× n cylindrical network
of Fig. 1, when both d1(x1,0) and d2(x2,0) are on the same
horizontal axis, we have

Rm×n({x1,0},{x2,0}) =
|x2− x1|

m
r

+
r0

2m

m−1

∑
i=1

β
(i)
1,1−2β

(i)
1,2 +β

(i)
2,2

(1− cosθi)G
(i)
n

. (100)

It is essential to take formula (11) into account again in
order to help the readers further understand its meaning, here
three simple examples are given below.

C

A0

B0

Cn

Bn

An

r

r

r1

r0

r0

r

r r

rr

r0

r2

r2

r2

r1

Fig. 6. 3D ∆ ×n network with resistors r and r0 in the respective horizontal
and vertical directions except for r1 and r2 on the left and right edges.

Case G When m = 3, figure 1 degrades into a 3D ∆ ×n
resistor network as shown in Fig. 6. By θi = 2iπ/m we have
θi = 2iπ/3 (i = 1,2), substituting them into Eq. (3) yields

λ1 = λ2 = 1+
3
2

h+

√(
1+

3
2

h
)2

−1. (101)

So, we have β
(2)
t,s = β

(1)
t,s , θ1 = 2π/3, and θ2 = 4π/3. By

Eq. (11), we obtain the resistance formula between any two
nodes

R∆×n(Ax1 ,Pk) =
|k− x1|

3
r+

2r0

9

β
(1)
1,1 −2β

(1)
1,2 cos(2πy/3)+β

(1)
2,2

G(1)
n

 , (102)

where Pk represents the nodes of Ak,Bk,Ck, and β
(1)
k,s and G(1)

k are, respectively, defined in Eqs. (6) and (7).
Please note that figure 6 is a new model since the boundary resistors of r1 and r2 are two arbitrary values which can lead

to different geometries. In Ref. [33] studied is only the network of canonical structure of r1 = r2 = r0. So, equation (102) is a
general formula, which can produce several specific results below.

Considering the resistance between two nodes Ax1 and Ax2 , there be y = 0 and equation (102) reduces to

R∆×n(Ax1 ,Ax2) =
|x2− x1|

3
r+

2r0

9

(
β
(1)
x1,x1 −2β

(1)
x1,x2 +β

(1)
x2,x2

G(1)
n

)
, (103)

where β
(i)
x1,k

= α
(i)
1,x1

α
(i)
2,n−k is defined in Eq. (6).

In particular, when x1 = 0 and r1 = r2 = r0, equation (103) reduces to

R∆×n(A0,Ax) =
x
3

r+
2r0

9

(
∆F(1)

n −2∆F(1)
n−x +∆F(1)

x ∆F(1)
n−x

F(1)
n+1

)
, (104)

R∆×n(A0,An) =
n
3

r+
4r0

9

(
∆F(1)

n −1

F(1)
n+1

)
. (105)

Considering the resistance between two nodes Ax1 and Bk (or Ck), there is y = 1, and equation (102) reduces to

R∆×n(Ax1 ,Bk) = R∆×n(Ax1 ,Ck) =
|k− x1|

3
r+

2r0

9

β
(1)
1,1 +β

(1)
1,2 +β

(1)
2,2

G(1)
n

 . (106)

In particular, when x1 = 0 and r1 = r2 = r0, equation (106) reduces to

R∆×n(A0,Bk) = R∆×n(A0,Ck) =
k
3

r+
2r0

9

(
∆F(1)

n +∆F(1)
n−k +∆F(1)

k ∆F(1)
n−k

F(1)
n+1

)
, (107)

R∆×n(A0,Bn) = R∆×n(A0,Cn) =
n
3

r+2r0
2∆F(1)

n +1

9F(1)
n+1

. (108)
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When x1 = k and r1 = r2 = r0, from Eq. (106) we have

R∆×n(Ak,Bk) = R∆×n(Ak,Ck) = 2r0
∆F(1)

k ∆F(1)
n−k

3F(1)
n+1

. (109)

Figure 6 is a simple and common network model, but due
to the complexity of the boundary conditions, it is always dif-
ficult to obtain equivalent resistance. Equation (102) is given
for the first time, which provides a new theoretical basis for
practical application.

In order to clearly understand the change rule of equiva-
lent resistances R∆×n(A0,Ak) and R∆×n(A0,Bk), we use Mat-
lab to draw their change curve as shown in Figs. 7–9.
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Fig. 7. 3D graph showing equivalent resistance R(A0, Ak) changing with h
and x in ∆ × n network, and resistance R(A0, Ax) increasing with augment
of n and x, where R(A0, A0) = 0 when x = 0.
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Fig. 8. 3D graph showing equivalent resistance R(A0, Bk) changing with h
and x in ∆ × n network, and the resistance R(A0, Bx) increasing with argu-
ment of n and x, where R(A0, B0)> 0 when x = 0.

Comparing Fig. 7 with Fig. 8, we find that their variation
patterns are basically similar, but there are slight differences
between them, that is, R∆×n(A0,A0) = 0 and R∆×n(A0,B0)> 0
which are exactly the same as the results of the actual circuit.
The equivalent resistance R(A0, Bk) increases with n and x in-
creasing. Figure 9 shows that R(A0, B0) decreases with the
increase of n, but R(A0, B0) increases with h increasing ex-
cept for n = 0. Since our formulae are all accurate and not
estimates, all the computer simulation results are exactly the
same as those in the three figures, i.e., Figs. 7–9, which indi-
rectly indicates the correctness of our results.
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Fig. 9. 3D graph showing equivalent resistance R(A0, B0) changing with h
and n in ∆ × n network, R(A0, B0) decreasing with the increase of n, and
R(A0, B0) increasing with argument of h except for n = 0.

Case H When m = 4, figure 2 degrades into a 3D �×n
resistor network as shown in Fig. 5. We can obtain the equiva-
lent resistance between any two nodes by Eq. (11). Firstly, by
Eq. (2) we have θi = iπ/2, substituting it into Eq. (3) yields

λ1 = λ3 = 1+h+
√

h2 +2h,

λ2 = 1+2h+2
√

h2 +h. (110)

So we have β
(3)
t,s = β

(1)
t,s , θ1 = π/2, and θ2 = π . By Eq. (11),

we have the equivalent resistance

R�×n(Ax1 ,Px2) =
|x2− x1|

4
r+ r0

β
(1)
1,1 −2β

(1)
1,2 cos(yπ/2)+β

(1)
2,2

4G(1)
n

+ r0
β
(2)
1,1 −2β

(2)
1,2 cos(yπ)+β

(2)
2,2

16G(2)
n

, (111)

where Pk represents the nodes of Ak, Bk, Ck, and Dk, and β
(i)
k,s and G(i)

k are, respectively, defined in Eqs. (6) and (7). Equation (111)
is a general formula, which can produce several specific results below.

When x1 = 0 and x2 = k, equation (111) reduces to

R�×n(A0,Pk) =
k
4

r+ r0
h1α2,n−2h1α

(1)
2,n−k cos(yπ/2)+α

(1)
1,k α

(1)
2,n−k

4G(1)
n

+ r0
h1α

(2)
2,n −2h1α

(2)
2,n−k cos(yπ)+α

(2)
1,k α

(2)
2,n−k

16G(2)
n

, (112)

where hk = rk/r0, α
(i)
k,s and G(i)

k are, respectively, defined in Eqs. (5) and (7).
When x1 = 0 and x2 = n, equation (112) reduces to

R�×n(A0,Pn) =
n
4

r+ r0
h1α2,n−2h1h2 cos(yπ/2)+h2α

(1)
1,n

4G(1)
n

+ r0
h1α

(2)
2,n −2h1h2 cos(yπ)+h2α

(2)
1,n

16G(2)
n

. (113)
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When x2 = x1, equation (111) reduces to

R�×n(Ax1 ,Px1) = r0
β
(1)
1,1 [1− cos(yπ/2)]

2G(1)
n

+ r0
β
(2)
1,1 [1− cos(yπ)]

8G(2)
n

, (114)

where Px1 = Ax1 if y = 0; Px1 = Bx1 if y = 1; Px1 =Cx1 if y = 2; Px1 = Dx1 if y = 3.
In particular, when r1 = r2 = r0, equation (114) reduces to

R�×n(Ax1 ,Px1) = r0
∆F(1)

x1 ∆F(1)
n−x1

[1− cos(yπ/2)]

2F(1)
n+1

+ r0
∆F(2)

x1 ∆F(2)
n−x1

[1− cos(yπ)]

8F(2)
n+1

. (115)

Equation (112) is still a complex and general formula, which can still produce several specific results below.
Considering the resistance between two nodes A0 and Ak, there is y = 0, so equation (112) reduces to

R�×n(A0,Ak) =
k
4

r+ r0
h1α

(1)
2,n −2h1α

(1)
2,n−k +α

(1)
1,k α

(1)
2,n−k

4G(1)
n

+ r0
h1α

(2)
2,n −2h1α

(2)
2,n−k +α

(2)
1,k α

(2)
2,n−k

16G(2)
n

. (116)

In particular, when r1 = r2 = r0 and k = n, from Eq. (116) we have

R�×n(A0,An) =
n
4

r+ r0
∆F(1)

n −1

2F(1)
n+1

+ r0
∆F(2)

n −1

8F(2)
n+1

, (117)

where F(i)
k = (λ n

i − λ̄ n
i )/(λi− λ̄i) is defined in Eq. (4).

Considering the resistance between two nodes A0 and Bk, there is y = 1, so equation (112) reduces to

R�×n(A0,Bk) =
k
4

r+ r0
h1α

(1)
2,n +α

(1)
1,k α

(1)
2,n−k

4G(1)
n

+ r0
h1α

(2)
2,n +2h1α

(2)
2,n−k +α

(2)
1,k α

(2)
2,n−k

16G(2)
n

, (118)

where hk = rk/r0, and α
(i)
k,s and G(i)

k are, respectively, defined

in Eqs. (5) and (7).

In particular, when r1 = r2 = r0 and k = n, from Eq. (118)
we have

R�×n(A0,Bn) =
n
4

r+ r0
∆F(1)

n

2F(1)
n+1

+ r0
∆F(2)

n +1

8F(2)
n+1

. (119)

Considering the resistance between two nodes A0 and Ck, there
is y = 2, so equation (112) reduces to

R�×n(A0,Ck) =
k
4

r+ r0
h1α

(1)
2,n +2h1α

(1)
2,n−k +α

(1)
1,k α

(1)
2,n−k

4G(1)
n

+r0
h1α

(2)
2,n −2h1α

(2)
2,n−k +α

(2)
1,k α

(2)
2,n−k

16G(2)
n

. (120)

In particular, when r1 = r2 = r0 and k = n, from Eq. (120)
we have

R�×n(A0,Cn) =
n
4

r+ r0
∆F(1)

n +1

2F(1)
n+1

+ r0
∆F(2)

n −1

8F(2)
n+1

. (121)

In order to clearly understand the change rule of equivalent re-
sistances R∆×n(A0,Ak) and R∆×n(A0,Bk), we use Matlab tool
to draw their change curve as shown in Figs. 10 and 11.
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Fig. 10. 3D graph showing equivalent resistance R(A0, Ak) changing with h
and x in �× n network, and resistance R(A0, Ax) increasing with augment
of n and x, where R(A0, A0) = 0 when x = 0.
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Fig. 11. 3D graph showing equivalent resistance R(A0, Ck) changing with h
and x in �×n network, and resistance R(A0, Cx) incresing with augment of
n and x, where R(A0, C0)> 0 when x = 0.
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From Figs. 10 and 11, the equivalent resistances R(A0, Ak)
and R(A0, Ck) increase with t n and x increasing. Comparing
Fig. 10 with Fig. 11, we find that their variation patterns are ba-
sically similar, but there are slight differences between them,
which are R�×n(A0,A0) = 0 and R�×n(A0,C0) > 0, these are
exactly the same as the results of the actual circuit.

In Refs. [33] and [49] the �× n circuit network with
r1 = r2 = r0 was studied specifically and the results of equiv-
alent resistance between two special nodes, such as the points
of A0,An and A0,Cn and A0,Bn were obtained (Notice that it
is only under the special condition of r1 = r2 = r0). Compar-
ing these results shows that they are exactly the same as the
results from Eqs. (115), (117), (119), and (121) in this paper.
The comparison among these results verifies their correctness.

The Case H indicates again that general formula (11) is

a meaningful and multipurpose result since just a 3D �× n

resistor network has rich contents and many functions such as

Eqs. (111)–(121).

Case I When m = 4, n = 3, and r1 = r2 = 0, figure 1

degrades into an anisotropic crystal as shown in Fig. 12. We

will give the equivalent resistance between any two nodes by

Eq. (96), which is to further understand the physical meaning

of Eq. (96).

We define the coordinates of four nodes: Bk(1,k),

Ck(2,k). As θi = iπ/2, (i = 1,2,3), then λk and λ̄k satisfies

Eq. (110), and cos(yθ1) = cos(yθ3). By Eq. (96) we have a

general formula

R(d1,d2) =
|x2− x1|

4
r+

β
(1)
1,1 −2β

(1)
1,2 cos(yπ/2)+β

(1)
2,2

2F(1)
3

r+
β
(2)
1,1 −2β

(2)
1,2 cos(yπ)+β

(2)
2,2

4F(2)
3

r, (122)

where β
(i)
k,s = F(i)

xk F(i)
3−xs

. By Eq. (122) we have a special set of results (h = r/r0)

R(A0,A3) =
3
4

r, (123)

R(A0,Bk) =
1
4

r+
(h+1)r

(2h+1)(2h+3)
+

(2h+1)r
2(4h+1)(4h+3)

, (124)

R(A0,Ck) =
1
2

r+
(h+1)r

(2h+1)(2h+3)
+

(2h+1)r
2(4h+1)(4h+3)

, (125)

R(B0,B1) = R(B0,B3) =
(h+1)r

(2h+1)(2h+3)
+

(2h+1)r
(4h+1)(4h+3)

, (126)

R(B0,B2) =
2(h+1)r

(2h+1)(2h+3)
, (127)

R(B0,Ck) =
1
4

r+
2(h+1)− cos(kπ/2)
(2h+1)(2h+3)

r+
2(2h+1)− cos(kπ)

2(4h+1)(4h+3)
r, (128)

where k = 0, 1, 2, 3, such as Ck = {C0,C1,C2,C3}.
The above results (123)–(128) are a series of equiva-

lent resistances derived from formula (122). The actual calcu-
lation is conducted based on Fig. 13, and the obtained results
are found to be exactly the same as the above results. This
indirectly verifies the correctness of the conclusion (11) given
in this paper.

C2B2

B1 C1

A0

A3

B0
C0

C3
B3

r

r0

r0

r

r
r

r
r

Fig. 12. Crystal lattice with resistors r and r0 in respective horizontal
and vertical directions.

According to the above discussion, the readers should be
able to understand the essential meaning of Eq. (11) and un-
derstand that equation (11) has broad application value for a
variety of lattice structures, which will provide a new theoret-
ical basis for relevant scientific research. As explained in Sec-
tion 1 and the numerous special cases given above, the theoret-
ical results of this paper will have potential application value
in relevant fields.

4.3. Comparison and trigonometric identities

Consider a regular m× n cylindrical network with r1 =

r2 = r0 as shown in Fig. 1. In Ref. [26] there was a resistance
formula (1) given by the Laplacian matrix method, which is in
the form of double sum. However, in this paper equation (92)
is given by the RT-V method, where the condition and network
structure are consistent with those in Ref. [26]. Obviously,
the two results in the different form, which appear in two
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independent articles, are necessarily equivalent because they are from the same network with the same coordinates. Comparing
formula (92) with formula (1), and taking y, m, n and x1,x2 as natural numbers, when 06 x1 6 x2 6 n, 06 y6 m−1, we obtain
the following trigonometric identity:

1
m

m−1

∑
i=1

n

∑
j=1

C2
x1, j +C2

x2, j−2Cx1, jCx2, j cos(yθi)

(1− cosθi)+h−1(1− cosφ j)
=

(
y2

m
− y
)
+

n+1
2m

m−1

∑
i=1

β
(i)
1,1−2β

(i)
1,2 cos(yθi)+β

(i)
2,2

(1− cosθi)F
(i)
n+1

, (129)

where Cxk, j = cos(xk+1/2)φ j with φ j = jπ/(n+1); θi = 2iπ/m; β
(i)
k,s =∆F(i)

xk ∆F(i)
n−xs

; ∆F(i)
k =F(i)

k+1−F(i)
k ; F(i)

k =(λ k
i − λ̄ k

i )/(λi− λ̄i)

with

λi = 1+h−hcosθi +
√

(1+h−hcosθi)2−1, λ̄i = 1+h−hcosθi−
√
(1+h−hcosθi)2−1. (130)

In particular, when setting y,m,n and x1,x2 to be special number values, we have the following interesting identities.
Deduction 1 When y = 0, from Eq. (129) we have

2
n+1

m−1

∑
i=1

n

∑
j=1

[cos(x1 +1/2)φ j− cos(x2 +1/2)φ j]
2

(1− cosθi)+h−1(1− cosφ j)
=

m−1

∑
i=1

β
(i)
1,1−2β

(i)
1,2 +β

(i)
2,2

(1− cosθi)F
(i)
n+1

. (131)

In particular, when m = 2, we have cosθ1 =−1, then equation (131) reduces to

1
n+1

n

∑
j=1

[cos(x1 +1/2)φ j− cos(x2 +1/2)φ j]
2

2+h−1(1− cosφ j)
=

β
(1)
1,1 −2β

(1)
1,2 +β

(1)
2,2

4F(1)
n+1

, (132)

where β
(1)
k,s = ∆F(1)

xk ∆F(1)
n−xs

, F(1)
k = (λ k

1 − λ̄ k
1 )/(λ1− λ̄1) with

λ1 = 1+2h+2
√

h(1+h), λ̄1 = 1+2 h−2
√

h(1+h). (133)

Deduction 2 When x1 = x2 = x, equation (129) reduces to

2
m

m−1

∑
i=1

n

∑
j=1

cos2 [(x+1/2)φ j] (1− cosyθi)

(1− cosθi)+h−1(1− cosφ j)
=

(
y2

m
− y
)
+

n+1
m

m−1

∑
i=1

∆F(i)
x ∆F(i)

n−x

F(i)
n+1

(
1− cos(yθi)

1− cosθi

)
, (134)

where φ j = jπ/(n+1) and θi = 2iπ/m.
Deduction 3 When m = 2, y = 1, we have cosθ1 =−1, φ j = jπ/(n+1), from Eq. (129), we have

1
n+1

n

∑
j=1

(Cx1, j +Cx2, j)
2

2+h−1(1− cosφ j)
=

β
(1)
1,1 +2β

(1)
1,2 +β

(1)
2,2

4F(1)
n+1

− 1
n+1

, (135)

where Cxk, j = cos(xk + 1/2)φ j; F(1)
k = (λ k

1 − λ̄ k
1 )/(λ1− λ̄1);

λ1 and λ̄1 are given by Eq. (133).
Deduction 4 When x= n= 0, θi = 2iπ/m, 06 y6m−1,

and y ∈ N, by Eq. (134) we have

m−1

∑
i=1

1− cos(yiπ/m)

1− cos(iπ/m)
= y(m− y). (136)

Note that the identity (129) is found for the first time in this
paper. Identity (129) reduces a double sum to a single sum,
which provides a new proposition and research method for
mathematical researchers.

5. Conclusions and comments
This paper shows a new progress of studying the electrical

characteristics (resistance and potential) of an arbitrary cylin-
drical m×n resistor network with complex boundaries by the

advanced RT-V method, which reveals the electrical charac-
teristics of complex cylindrical network for the first time, such
as three general formulae (8), (10), and (11). As the general
applications of these three formulas, many interesting results
are produced for various types of resistor networks. When the
boundary resistor r2 = 0, the non-regular cylindrical network
degrades into a cobweb network as shown in Fig. 3; when the
boundary resistor r1 = r2 = 0, the non-regular cylindrical net-
work degrades into a globe network as shown in Fig. 4; when
considering m = 3 and m = 4 figure 1 degrades into the ∆ ×n
and �×n networks. These show that the cylindrical network
in Fig. 1 is a kind of complex network with multi-function and
multi-structure, which is a network model and scientific prob-
lem with great research value. In particular, a new mathemati-
cal identity is discovered in the comparative study, which pro-
vides a new proposition for mathematical researchers. These
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problems discussed above give rise to a series of new results
presented in this paper, which fill in the deficiencies of previ-
ous literature research,and provide a new theoretical basis for
multidisciplinary application. This shows that the RT method
has a wide range of applications and can solve a variety of
complex resistance network problems, and it has become the
basic theory of relevant scientific research in the future.

As is well known, the research of resistor network is
mainly a model study, which can explain more problems that
have been solved or not solved previously. The present re-
search focuses on how to study and establish the complex
network model. Therefore, the discussion emphasizes the re-
search methodology and calculation results of resistor network
model. This paper presents the theoretical results of the overall
electrical properties of cylindrical networks and discuss a se-
ries of special cases for illustrating that the cylindrical network
with complex boundary has many special structures, so it has
more potential application value. The RT method is mainly
used to accurately study the resistor network model with com-
plex boundary conditions, and then the analytical expressions
of electrical properties obtained from the network model can
be applied to other relevant scientific problems. The limitation
of this paper is that it does not give concrete applications in
practical problems. However, the relevant problems in the fu-
ture new technology can be abstracted into the network model
at first, and then solved by the theory of electrical properties
given in this paper, and the examples can be found from neural
networks, artificial intelligence, discrete mathematics, etc.
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